Exemplo de configuração que usei numa instância aws ec2

Coturn

turnserver.conf

#
# Coturn TURN SERVER configuration file
#
# Boolean values note: where boolean value is supposed to be used,
# you can use '0', 'off', 'no', 'false', 'f' as 'false,
# and you can use '1', 'on', 'yes', 'true', 't' as 'true'
# If the value is missed, then it means 'true'.
#

# Listener interface device (optional, Linux only).
# NOT RECOMMENDED.
#
#listening-device=eth0

# TURN listener port for UDP and TCP (Default: 3478).
# Note: actually, TLS & DTLS sessions can connect to the
# "plain" TCP & UDP port(s), too - if allowed by configuration.
#
#listening-port=3478
listening-port=3478

# TURN listener port for TLS (Default: 5349).
# Note: actually, "plain" TCP & UDP sessions can connect to the TLS & DTLS
# port(s), too - if allowed by configuration. The TURN server
# "automatically" recognizes the type of traffic. Actually, two listening
# endpoints (the "plain" one and the "tls" one) are equivalent in terms of
# functionality; but we keep both endpoints to satisfy the RFC 5766 specs.
# For secure TCP connections, we currently support SSL version 3 and
# TLS version 1.0, 1.1 and 1.2.
# For secure UDP connections, we support DTLS version 1.
#
#tls-listening-port=5349

# Alternative listening port for UDP and TCP listeners;
# default (or zero) value means "listening port plus one".
# This is needed for RFC 5780 support
# (STUN extension specs, NAT behavior discovery). The TURN Server
# supports RFC 5780 only if it is started with more than one
# listening IP address of the same family (IPv4 or IPv6).
# RFC 5780 is supported only by UDP protocol, other protocols
# are listening to that endpoint only for "symmetry".
#
#alt-listening-port=0

# Alternative listening port for TLS and DTLS protocols.
# Default (or zero) value means "TLS listening port plus one".
#
#alt-tls-listening-port=0

# Listener IP address of relay server. Multiple listeners can be specified.
# If no IP(s) specified in the config file or in the command line options,
# then all IPv4 and IPv6 system IPs will be used for listening.
#
#listening-ip=172.17.19.101
#listening-ip=10.207.21.238
#listening-ip=2607:f0d0:1002:51::4

# Auxiliary STUN/TURN server listening endpoint.
# Aux servers have almost full TURN and STUN functionality.
# The (minor) limitations are:
#
# 1) Auxiliary servers do not have alternative ports and
# they do not support STUN RFC 5780 functionality (CHANGE REQUEST).
#
# 2) Auxiliary servers also are never returning ALTERNATIVE-SERVER reply.
#
# Valid formats are 1.2.3.4:5555 for IPv4 and [1:2::3:4]:5555 for IPv6.
#
# There may be multiple aux-server options, each will be used for listening
# to client requests.
#
#aux-server=172.17.19.110:33478
#aux-server=[2607:f0d0:1002:51::4]:33478

# (recommended for older Linuxes only)
# Automatically balance UDP traffic over auxiliary servers (if configured).
# The load balancing is using the ALTERNATE-SERVER mechanism.
# The TURN client must support 300 ALTERNATE-SERVER response for this
# functionality.
#
#udp-self-balance

# Relay interface device for relay sockets (optional, Linux only).
# NOT RECOMMENDED.
#
#relay-device=eth1

# Relay address (the local IP address that will be used to relay the
# packets to the peer).
# Multiple relay addresses may be used.
# The same IP(s) can be used as both listening IP(s) and relay IP(s).
#
# If no relay IP(s) specified, then the turnserver will apply the default
# policy: it will decide itself which relay addresses to be used, and it
# will always be using the client socket IP address as the relay IP address
# of the TURN session (if the requested relay address family is the same
# as the family of the client socket).
#
#relay-ip=172.17.19.105
#relay-ip=2607:f0d0:1002:51::5

# For Amazon EC2 users:
#
# TURN Server public/private address mapping, if the server is behind NAT.
# In that situation, if a -X is used in form "-X <ip>" then that ip will be reported
# as relay IP address of all allocations. This scenario works only in a simple case
# when one single relay address is be used, and no RFC5780 functionality is required.
# That single relay address must be mapped by NAT to the 'external' IP.
# The "external-ip" value, if not empty, is returned in XOR-RELAYED-ADDRESS field.
# For that 'external' IP, NAT must forward ports directly (relayed port 12345
# must be always mapped to the same 'external' port 12345).
#
# In more complex case when more than one IP address is involved,
# that option must be used several times, each entry must
# have form "-X <public-ip/private-ip>", to map all involved addresses.
# RFC5780 NAT discovery STUN functionality will work correctly,
# if the addresses are mapped properly, even when the TURN server itself
# is behind A NAT.
#
# By default, this value is empty, and no address mapping is used.
#
#external-ip=60.70.80.91
external-ip=3.85.30.220

#
#OR:
#
#external-ip=60.70.80.91/172.17.19.101
#external-ip=60.70.80.92/172.17.19.102

# Number of the relay threads to handle the established connections
# (in addition to authentication thread and the listener thread).
# If explicitly set to 0 then application runs relay process in a
# single thread, in the same thread with the listener process
# (the authentication thread will still be a separate thread).
#
# If this parameter is not set, then the default OS-dependent
# thread pattern algorithm will be employed. Usually the default
# algorithm is the most optimal, so you have to change this option
# only if you want to make some fine tweaks.
#
# In the older systems (Linux kernel before 3.9),
# the number of UDP threads is always one thread per network listening
# endpoint - including the auxiliary endpoints - unless 0 (zero) or
# 1 (one) value is set.
#
#relay-threads=0

# Lower and upper bounds of the UDP relay endpoints:
# (default values are 49152 and 65535)
#
#min-port=49152
#max-port=65535
min-port=10000
max-port=20000

# Uncomment to run TURN server in 'normal' 'moderate' verbose mode.
# By default the verbose mode is off.
#verbose
verbose

# Uncomment to run TURN server in 'extra' verbose mode.
# This mode is very annoying and produces lots of output.
# Not recommended under any normal circumstances.
#
#Verbose

# Uncomment to use fingerprints in the TURN messages.
# By default the fingerprints are off.
#
#fingerprint
fingerprint

# Uncomment to use long-term credential mechanism.
# By default no credentials mechanism is used (any user allowed).
#
#lt-cred-mech

# This option is opposite to lt-cred-mech.
# (TURN Server with no-auth option allows anonymous access).
# If neither option is defined, and no users are defined,
# then no-auth is default. If at least one user is defined,
# in this file or in command line or in usersdb file, then
# lt-cred-mech is default.
#
#no-auth

# TURN REST API flag.
# (Time Limited Long Term Credential)
# Flag that sets a special authorization option that is based upon authentication secret.
#
# This feature's purpose is to support "TURN Server REST API", see
# "TURN REST API" link in the project's page
# <https://github.com/coturn/coturn/>
#
# This option is used with timestamp:
#
# usercombo -> "timestamp:userid"
# turn user -> usercombo
# turn password -> base64(hmac(secret key, usercombo))
#
# This allows TURN credentials to be accounted for a specific user id.
# If you don't have a suitable id, the timestamp alone can be used.
# This option is just turning on secret-based authentication.
# The actual value of the secret is defined either by option static-auth-secret,
# or can be found in the turn_secret table in the database (see below).
#
# Read more about it:
#  - <https://tools.ietf.org/html/draft-uberti-behave-turn-rest-00>
#  - <https://www.ietf.org/proceedings/87/slides/slides-87-behave-10.pdf>
#
# Be aware that use-auth-secret overrides some part of lt-cred-mech.
# Notice that this feature depends internally on lt-cred-mech, so if you set
# use-auth-secret then it enables internally automatically lt-cred-mech option
# like if you enable both.
#
# You can use only one of the to auth mechanisms in the same time because,
# both mechanism use the username and password validation in different way.
#
# This way be aware that you can't use both auth mechnaism in the same time!
# Use in config either the lt-cred-mech or the use-auth-secret
# to avoid any confusion.
#
#use-auth-secret

# 'Static' authentication secret value (a string) for TURN REST API only.
# If not set, then the turn server
# will try to use the 'dynamic' value in turn_secret table
# in user database (if present). The database-stored  value can be changed on-the-fly
# by a separate program, so this is why that other mode is 'dynamic'.
#
#static-auth-secret=north

# Server name used for
# the oAuth authentication purposes.
# The default value is the realm name.
#
#server-name=blackdow.carleon.gov

# Flag that allows oAuth authentication.
#
#oauth

# 'Static' user accounts for long term credentials mechanism, only.
# This option cannot be used with TURN REST API.
# 'Static' user accounts are NOT dynamically checked by the turnserver process,
# so that they can NOT be changed while the turnserver is running.
#
#user=username1:key1
#user=username2:key2
user=demo:demo123
# OR:
#user=username1:password1
#user=username2:password2
#
# Keys must be generated by turnadmin utility. The key value depends
# on user name, realm, and password:
#
# Example:
# $ turnadmin -k -u ninefingers -r north.gov -p youhavetoberealistic
# Output: 0xbc807ee29df3c9ffa736523fb2c4e8ee
# ('0x' in the beginning of the key is what differentiates the key from
# password. If it has 0x then it is a key, otherwise it is a password).
#
# The corresponding user account entry in the config file will be:
#
#user=ninefingers:0xbc807ee29df3c9ffa736523fb2c4e8ee
# Or, equivalently, with open clear password (less secure):
#user=ninefingers:youhavetoberealistic
#